Information on Result #2157083
There is no linear OA(2106, 2282, F2, 25) (dual of [2282, 2176, 26]-code), because 1 times truncation would yield linear OA(2105, 2281, F2, 24) (dual of [2281, 2176, 25]-code), but
- the Johnson bound shows that N ≤ 10 995115 846038 138629 423181 216250 000938 620637 201381 378423 789106 583019 508255 307965 196729 091438 448872 468788 621863 671931 889637 198450 696277 972268 109246 302193 634382 262772 327497 738624 193680 739757 904357 472230 776513 120016 644749 764882 992703 587342 432910 703809 448934 760917 000695 329885 934698 303798 258633 573145 999198 757854 245200 515626 994470 716387 444322 408238 663484 556222 792242 645959 495917 051938 784367 715437 201306 182358 813649 562421 484488 577447 530521 018550 153185 023761 823258 348482 536516 178457 174079 689571 556443 798924 407508 601124 238096 527503 992962 360971 827044 498874 700559 839137 567733 328912 942713 624214 810176 758857 371665 045545 642282 530694 626815 418410 590361 891573 300134 901949 < 22176 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.