Information on Result #2157113
There is no linear OA(2107, 2417, F2, 25) (dual of [2417, 2310, 26]-code), because 1 times truncation would yield linear OA(2106, 2416, F2, 24) (dual of [2416, 2310, 25]-code), but
- the Johnson bound shows that N ≤ 239439 705646 038755 283621 422678 117570 220973 828481 013506 820873 007467 851518 427405 028830 238001 562638 190481 362485 223474 991114 236496 389011 679299 797834 298133 050279 163868 808808 448850 824380 960135 387852 338664 535658 527859 242270 838770 781025 600158 893858 411400 656651 556792 843904 803409 545554 364017 759211 859422 022261 300559 061137 835802 488660 568199 696518 963298 032295 279679 072117 056830 901915 886063 709581 023138 030617 201339 293252 532302 656251 768539 452677 246286 344785 811586 761859 127861 239055 242119 708207 074309 117067 295610 564303 732102 864511 273686 437478 344412 136019 633074 377727 852382 262568 739354 632835 815222 337392 793472 117285 117154 014245 860345 703298 962353 903330 769886 226662 713398 725988 146107 096250 553252 888005 834162 397622 < 22310 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.