Information on Result #2157134
There is no linear OA(2110, 1900, F2, 27) (dual of [1900, 1790, 28]-code), because 1 times truncation would yield linear OA(2109, 1899, F2, 26) (dual of [1899, 1790, 27]-code), but
- the Johnson bound shows that N ≤ 69504 563453 005139 642211 752425 087837 281153 006444 667406 049973 637289 690024 524417 654837 389483 040507 819526 915725 746161 333267 190061 066811 987502 765936 023379 230854 092346 236912 999419 997224 944081 132877 412496 281967 560310 298716 543546 648577 714838 644860 863878 363209 773419 819047 228257 432532 217923 670742 393137 051147 469281 741378 339673 401593 044158 187201 893784 215149 862856 779034 471736 695273 855326 369658 321910 918203 130137 363003 772296 218915 580335 446952 893107 160090 214282 934741 529985 039748 927017 958668 076434 592449 755426 638142 830690 842603 894061 049570 267136 727754 < 21790 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.