Information on Result #2157182
There is no linear OA(2112, 2113, F2, 27) (dual of [2113, 2001, 28]-code), because 1 times truncation would yield linear OA(2111, 2112, F2, 26) (dual of [2112, 2001, 27]-code), but
- the Johnson bound shows that N ≤ 228 729389 423959 819372 439930 160394 809418 930197 948755 107983 887342 997622 197908 821122 898983 812760 579685 008091 202447 659934 131539 924162 083725 209207 794374 012990 477078 764669 998643 344558 027317 109701 969789 614891 547794 480116 206883 363033 441402 931426 143650 982438 014642 482734 446475 207321 918653 453371 374466 627132 514275 070831 046022 351311 623755 290700 320127 641759 473823 913521 882925 479058 565282 743246 281228 820037 506600 133467 664104 833150 696890 487097 132135 819999 577434 402622 617952 986245 232785 328172 985940 236658 021032 079793 683334 919191 163480 608431 408570 663176 008270 108444 674685 440899 669940 430956 083803 781166 191945 114907 945934 < 22001 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.