Information on Result #2157230
There is no linear OA(2114, 2350, F2, 27) (dual of [2350, 2236, 28]-code), because 1 times truncation would yield linear OA(2113, 2349, F2, 26) (dual of [2349, 2236, 27]-code), but
- the Johnson bound shows that N ≤ 12 649160 945870 669627 360147 798993 981750 108092 329120 363681 707276 128601 436089 602109 873184 881421 659906 861958 069819 045505 005106 827217 767972 141763 207231 052605 239303 092737 823283 134091 511963 034114 740313 429416 459857 336171 196816 783207 708141 851877 547449 539758 378998 704123 159944 329870 750459 891338 985812 401103 978411 850822 264343 684164 455450 625615 044939 070339 173583 363879 785908 294837 134700 205134 377811 655471 196409 469334 512451 958697 752292 894118 605315 520808 512161 536591 327646 294499 669065 613579 134219 107288 117336 289249 929506 520227 093841 527807 343264 956793 944396 300784 199203 277917 397285 872829 469980 073294 484256 060162 116678 150820 848279 710424 320617 215824 673984 411397 254527 339594 288657 291752 211354 < 22236 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.