Information on Result #2157280
There is no linear OA(2116, 2614, F2, 27) (dual of [2614, 2498, 28]-code), because 1 times truncation would yield linear OA(2115, 2613, F2, 26) (dual of [2613, 2498, 27]-code), but
- the Johnson bound shows that N ≤ 93 756163 632076 810709 419092 614492 568586 051156 360783 180765 656593 724437 787318 330132 368082 439021 015881 157286 912684 531239 663216 892179 746142 423727 061323 070081 123389 303721 937259 629043 711135 015074 513028 463036 044379 982727 040359 272524 293161 123228 121665 313586 298187 489271 969292 701915 250854 068940 474454 009896 701037 875198 203265 836668 766551 810260 121595 391916 126964 555784 873111 772643 885730 579451 815314 707496 979527 902549 497547 619876 142439 655991 753787 318063 224046 071572 600951 927198 154248 546498 735895 702773 358840 747210 015638 843103 868867 698847 885859 905174 701103 463939 106653 517638 179844 583934 006798 235969 042886 818175 568789 130978 516786 218681 005889 439167 059543 112671 999576 209067 691821 526291 131592 429076 677941 682592 199144 311594 548670 117796 677643 080505 690878 383713 738333 847914 < 22498 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.