Information on Result #2157612
There is no linear OA(2127, 7664, F2, 25) (dual of [7664, 7537, 26]-code), because 1 times truncation would yield linear OA(2126, 7663, F2, 24) (dual of [7663, 7537, 25]-code), but
- the Johnson bound shows that N ≤ 7 295792 244399 977521 072637 549749 929688 123521 343370 482186 236991 789963 402253 430380 985499 300612 413988 691751 460070 402899 208505 447166 454051 328718 747567 967569 947769 102041 303349 848557 627063 083807 005416 601152 149370 382208 599037 424834 969365 472675 235766 393796 645573 745917 527385 111993 232774 010334 901072 170719 507078 968465 364961 044255 808256 240284 608638 675242 926466 033945 975324 050770 810101 795878 585546 494453 970966 091025 799278 897655 246272 526036 966047 345235 094681 287566 940852 550997 114470 835430 435504 776766 781802 332395 690846 313962 909964 578963 057734 515824 620576 364890 685603 289132 885342 832896 535285 906436 775420 325832 484200 857286 635926 083162 575115 920295 005280 532464 755458 095082 806940 139262 086159 326264 855011 802936 944410 714130 341493 882470 922046 250302 055066 671762 818888 893227 327694 738703 905702 933641 165450 971331 535289 566237 404426 334186 330918 052304 310340 095517 622322 555289 253715 829873 510825 618727 412181 715609 633628 986599 315967 442811 938026 947782 096810 508091 291968 991024 647391 487397 990073 199713 287666 626752 487738 440355 069550 183801 404872 277724 235512 753429 036993 947016 871489 359223 087396 245062 168702 802421 449889 416800 536302 561436 993965 481499 248811 385033 542801 996688 566204 918815 224351 783262 357200 358011 780804 882091 988648 621207 682889 579520 457473 480531 325307 095782 375857 045553 763938 929431 308321 335762 376826 968232 509460 540510 870834 787394 651414 731876 089650 223881 156339 332271 521232 220007 549341 968981 177499 652764 356206 268023 748033 510791 063178 162393 388430 576105 167295 827386 689577 569470 916628 426609 014739 170720 497866 239276 591578 734851 500068 170583 002327 794447 257736 116051 255754 829632 811286 662192 181710 637772 354961 860789 000793 503366 969153 286287 311103 783407 816662 369148 958075 420131 851822 705617 216691 380605 262256 007706 485283 446650 285257 283696 383904 257056 094531 622768 071726 262146 609513 982420 821216 406180 801147 512207 652615 004240 183710 540243 155871 806356 782861 723367 024764 750688 279245 391498 023609 563419 302181 158181 777977 094082 709254 018572 156857 889385 554142 037745 695228 400468 173855 871029 247006 829336 436535 725676 120383 436437 209925 355217 249188 242320 121726 137004 510359 050292 596000 726743 561609 877096 377768 912299 465069 597293 997907 173274 527073 310220 414282 039488 989787 282475 560994 503297 056834 327033 843168 685806 250833 108862 062826 821796 779215 417058 818591 760288 649076 723282 096406 312100 975781 264989 268786 609389 308941 492968 296784 < 27537 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.