Information on Result #2157667
There is no linear OA(2129, 8602, F2, 25) (dual of [8602, 8473, 26]-code), because 1 times truncation would yield linear OA(2128, 8601, F2, 24) (dual of [8601, 8473, 25]-code), but
- the Johnson bound shows that N ≤ 4 236577 527094 870105 069346 078034 900122 021776 829967 967970 897744 078213 545007 359565 545439 077762 346375 386340 142640 022678 418564 203972 105750 615714 177389 005858 668065 833954 609930 297613 483705 921132 995752 121188 184231 120108 535830 504600 429305 010820 515652 610746 693845 525780 557101 518330 593780 360401 961276 498245 851521 822153 210929 827765 175496 258250 097153 505877 866999 745390 887599 604112 230351 423404 923097 025255 432772 189076 071359 685108 568633 362353 127389 367534 956705 184780 895494 927773 043276 077621 513166 045472 103452 690678 424205 180800 734595 727966 842663 419375 887019 751060 969387 184987 285675 918773 664065 119895 245985 848746 379853 926897 290927 892275 582681 896620 580932 317043 353463 933917 197899 241111 275862 421728 322900 318001 644042 793561 166631 609349 362059 676560 216516 438574 812152 900696 011901 184492 801408 949571 008662 011433 199682 926660 411265 175081 854342 415013 504897 175895 577803 870759 421541 863843 871659 109589 273624 695096 828753 874367 187337 269878 119850 929560 548921 697664 453916 815799 841718 066169 231134 579036 275926 647313 724019 602055 310765 950232 893787 044530 026499 447475 976501 619854 978096 325606 434051 380919 713528 375942 430028 243056 356772 865738 261977 469518 107264 181403 336489 532026 597345 369337 301602 915039 491991 650621 825005 675641 246919 216750 017003 438264 849958 352097 587069 953029 728687 748233 048057 908287 471453 109949 768142 786033 186493 356349 702994 839299 617687 948490 131342 505476 482744 558050 243589 447963 965233 966250 357948 913118 379120 168088 347697 274273 325177 631829 199164 614968 598524 854306 015689 579755 850138 481748 581770 551310 940992 537246 097681 157691 166636 084222 455320 443143 786845 133845 632967 985201 674614 364022 887178 434034 840268 974449 470231 914736 530312 088143 265354 792494 231314 109386 279012 182186 715208 553130 245939 045192 867025 955345 685325 358677 588065 489897 501993 160109 702617 924923 042348 145950 771240 658193 296210 630532 674353 142036 031096 221605 650291 815280 256250 818957 473774 018794 867315 346618 240121 399007 269333 492976 350481 460911 622375 507704 539137 395015 017147 239012 595264 782092 821822 662122 044903 099562 259081 751243 823478 263901 844900 979937 976824 312201 019026 551176 979437 824191 220170 223793 555713 825960 066122 559131 453405 459960 840313 043011 770616 906913 574132 047690 589706 786656 125135 926646 773499 813856 154148 190272 405376 781279 207481 003446 603977 484852 579611 423481 935141 056016 890498 168779 395965 307339 503263 942932 834150 249809 328289 899069 445006 409936 212137 035247 514294 164878 836045 947999 209622 209914 924340 133550 657849 960845 295557 405843 339118 749507 476783 720348 127888 945824 944896 838532 166308 224613 626470 410047 090486 436641 116899 079359 918028 009399 776336 609401 685207 730450 104913 986449 463196 369186 566357 409025 343066 658967 407540 091497 < 28473 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.