Information on Result #2160475
There is no linear OA(3144, 193, F3, 94) (dual of [193, 49, 95]-code), because 1 times truncation would yield linear OA(3143, 192, F3, 93) (dual of [192, 49, 94]-code), but
- residual code [i] would yield OA(350, 98, S3, 31), but
- the linear programming bound shows that M ≥ 10987 648641 013342 145743 173235 372682 266899 084370 827701 912518 996312 526775 125687 859494 241272 685867 404994 948584 725486 672070 814119 485618 889026 285759 139347 500994 272409 764144 107327 485143 / 14936 850860 728382 359380 496865 658716 917486 950067 604982 230925 851448 010473 789047 996877 004044 146341 975545 413487 942444 435229 603540 358524 720271 605160 064554 378035 > 350 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.