Information on Result #2160646
There is no linear OA(3157, 237, F3, 101) (dual of [237, 80, 102]-code), because 2 times truncation would yield linear OA(3155, 235, F3, 99) (dual of [235, 80, 100]-code), but
- residual code [i] would yield OA(356, 135, S3, 33), but
- the linear programming bound shows that M ≥ 5 540520 515178 119714 998982 762661 978465 988205 121913 455751 263763 784143 824055 345444 731692 711420 873316 188654 321383 010897 917089 561694 445957 308942 731239 278125 / 9558 817773 928640 265890 794601 216127 677021 431399 946162 118946 281454 606414 917120 730244 821409 409342 932190 846015 398469 123832 877827 > 356 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.