Information on Result #2160931
There is no linear OA(3187, 239, F3, 122) (dual of [239, 52, 123]-code), because 2 times truncation would yield linear OA(3185, 237, F3, 120) (dual of [237, 52, 121]-code), but
- residual code [i] would yield OA(365, 116, S3, 40), but
- the linear programming bound shows that M ≥ 1010 233715 716651 107612 542215 638091 218609 672761 165524 903593 924473 005111 306769 562821 186134 762126 385755 152296 422613 586112 342241 377727 269019 414533 549609 685737 803087 / 94 423144 003278 216048 118473 500831 454684 060079 864523 188758 682434 278034 186489 210172 080884 936271 279930 533580 650501 446289 752944 864745 > 365 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.