Information on Result #2164485
There is no linear OA(4190, 237, F4, 141) (dual of [237, 47, 142]-code), because 1 times truncation would yield linear OA(4189, 236, F4, 140) (dual of [236, 47, 141]-code), but
- residual code [i] would yield OA(449, 95, S4, 35), but
- the linear programming bound shows that M ≥ 41192 474812 375713 789000 699456 975821 961965 744513 198426 307979 395590 830886 737800 969827 312304 732817 560215 797035 362301 689741 847926 242075 544191 768132 126714 956760 481792 / 121742 667562 520763 956640 695430 713637 859834 747719 323855 290261 057074 960416 613540 339354 221353 298210 726466 255682 521963 771033 504571 810965 > 449 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
None.