Information on Result #2168450
There is no linear OA(5118, 227, F5, 90) (dual of [227, 109, 91]-code), because 1 times truncation would yield linear OA(5117, 226, F5, 89) (dual of [226, 109, 90]-code), but
- construction Y1 [i] would yield
- OA(5116, 143, S5, 89), but
- the linear programming bound shows that M ≥ 2738 237588 593697 454668 762256 522048 887080 570758 264064 445890 203342 535984 543104 632393 806241 452693 939208 984375 / 2 228541 507840 976583 547528 > 5116 [i]
- OA(5109, 226, S5, 83), but
- discarding factors would yield OA(5109, 147, S5, 83), but
- the linear programming bound shows that M ≥ 97832 005097 623965 961965 091455 398251 491670 818930 622769 438002 739592 061328 226246 796901 932611 945085 227489 471435 546875 / 5 803319 642355 292721 815985 390811 721467 > 5109 [i]
- discarding factors would yield OA(5109, 147, S5, 83), but
- OA(5116, 143, S5, 89), but
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.