Information on Result #2175947
Linear OA(260, 275, F2, 14) (dual of [275, 215, 15]-code), using strength reduction based on linear OA(260, 275, F2, 15) (dual of [275, 215, 16]-code), using
- adding a parity check bit [i] based on linear OA(259, 274, F2, 14) (dual of [274, 215, 15]-code), using
- construction XX applied to C1 = C([253,10]), C2 = C([1,12]), C3 = C1 + C2 = C([1,10]), and C∩ = C1 ∩ C2 = C([253,12]) [i] based on
- linear OA(249, 255, F2, 13) (dual of [255, 206, 14]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,10}, and designed minimum distance d ≥ |I|+1 = 14 [i]
- linear OA(248, 255, F2, 12) (dual of [255, 207, 13]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,12], and designed minimum distance d ≥ |I|+1 = 13 [i]
- linear OA(257, 255, F2, 15) (dual of [255, 198, 16]-code), using the primitive BCH-code C(I) with length 255 = 28−1, defining interval I = {−2,−1,…,12}, and designed minimum distance d ≥ |I|+1 = 16 [i]
- linear OA(240, 255, F2, 10) (dual of [255, 215, 11]-code), using the primitive narrow-sense BCH-code C(I) with length 255 = 28−1, defining interval I = [1,10], and designed minimum distance d ≥ |I|+1 = 11 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 9, F2, 1) (dual of [9, 8, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s (see above)
- construction XX applied to C1 = C([253,10]), C2 = C([1,12]), C3 = C1 + C2 = C([1,10]), and C∩ = C1 ∩ C2 = C([253,12]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | Linear OOA(260, 146, F2, 2, 14) (dual of [(146, 2), 232, 15]-NRT-code) | [i] | Embedding of OOA with Gilbert–Varšamov Bound | |
2 | Linear OOA(260, 146, F2, 3, 14) (dual of [(146, 3), 378, 15]-NRT-code) | [i] | ||
3 | Linear OOA(260, 146, F2, 4, 14) (dual of [(146, 4), 524, 15]-NRT-code) | [i] | ||
4 | Linear OOA(260, 146, F2, 5, 14) (dual of [(146, 5), 670, 15]-NRT-code) | [i] | ||
5 | Linear OOA(260, 146, F2, 6, 14) (dual of [(146, 6), 816, 15]-NRT-code) | [i] | ||
6 | Linear OOA(260, 146, F2, 7, 14) (dual of [(146, 7), 962, 15]-NRT-code) | [i] | ||
7 | Linear OOA(260, 146, F2, 8, 14) (dual of [(146, 8), 1108, 15]-NRT-code) | [i] | ||
8 | Digital (46, 60, 146)-net over F2 | [i] | ||
9 | Linear OOA(260, 55, F2, 5, 14) (dual of [(55, 5), 215, 15]-NRT-code) | [i] | OOA Folding |