Information on Result #2188570

Linear OA(2249, 252, F2, 142) (dual of [252, 3, 143]-code), using strength reduction based on linear OA(2249, 252, F2, 143) (dual of [252, 3, 144]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2248, 251, F2, 141) (dual of [251, 3, 142]-code) [i]Truncation
2Linear OA(2247, 250, F2, 140) (dual of [250, 3, 141]-code) [i]
3Linear OA(2245, 248, F2, 138) (dual of [248, 3, 139]-code) [i]
4Linear OA(2244, 247, F2, 137) (dual of [247, 3, 138]-code) [i]
5Linear OA(2243, 246, F2, 136) (dual of [246, 3, 137]-code) [i]
6Linear OA(2241, 244, F2, 134) (dual of [244, 3, 135]-code) [i]
7Linear OA(2240, 243, F2, 133) (dual of [243, 3, 134]-code) [i]
8Linear OA(2238, 241, F2, 131) (dual of [241, 3, 132]-code) [i]
9Linear OA(2237, 240, F2, 130) (dual of [240, 3, 131]-code) [i]
10Linear OA(2236, 239, F2, 129) (dual of [239, 3, 130]-code) [i]
11Linear OA(2234, 237, F2, 127) (dual of [237, 3, 128]-code) [i]
12Linear OA(2233, 236, F2, 126) (dual of [236, 3, 127]-code) [i]
13Linear OA(2231, 234, F2, 124) (dual of [234, 3, 125]-code) [i]
14Linear OOA(2249, 126, F2, 2, 142) (dual of [(126, 2), 3, 143]-NRT-code) [i]OOA Folding
15Linear OOA(2249, 84, F2, 3, 142) (dual of [(84, 3), 3, 143]-NRT-code) [i]
16Linear OOA(2249, 36, F2, 7, 142) (dual of [(36, 7), 3, 143]-NRT-code) [i]