Information on Result #2219398

Linear OA(220, 41, F2, 8) (dual of [41, 21, 9]-code), using 1 times truncation based on linear OA(221, 42, F2, 9) (dual of [42, 21, 10]-code), using

Mode: Constructive and linear.

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1Linear OA(2215, 231, F2, 96) (dual of [231, 16, 97]-code) [i]Juxtaposition
2Linear OA(2214, 229, F2, 96) (dual of [229, 15, 97]-code) [i]
3Linear OA(2212, 226, F2, 96) (dual of [226, 14, 97]-code) [i]
4Linear OA(2211, 224, F2, 96) (dual of [224, 13, 97]-code) [i]
5Linear OA(2157, 309, F2, 38) (dual of [309, 152, 39]-code) [i]Construction XX with Cyclic Codes
6Linear OA(2154, 305, F2, 38) (dual of [305, 151, 39]-code) [i]
7Linear OA(2162, 305, F2, 40) (dual of [305, 143, 41]-code) [i]
8Linear OA(2260, 306, F2, 98) (dual of [306, 46, 99]-code) [i]
9Linear OA(2238, 562, F2, 52) (dual of [562, 324, 53]-code) [i]
10Linear OA(2247, 562, F2, 54) (dual of [562, 315, 55]-code) [i]
11Linear OA(2252, 576, F2, 54) (dual of [576, 324, 55]-code) [i]
12Linear OA(2177, 205, F2, 56) (dual of [205, 28, 57]-code) [i]Construction XX with a Chain of De Boer–Brouwer Codes
13Linear OOA(220, 20, F2, 2, 8) (dual of [(20, 2), 20, 9]-NRT-code) [i]OOA Folding