Information on Result #2667447
Linear OOA(2103, 177, F2, 3, 23) (dual of [(177, 3), 428, 24]-NRT-code), using 21 times duplication based on linear OOA(2102, 177, F2, 3, 23) (dual of [(177, 3), 429, 24]-NRT-code), using
- OOA 3-folding [i] based on linear OA(2102, 531, F2, 23) (dual of [531, 429, 24]-code), using
- construction XX applied to C1 = C([509,18]), C2 = C([0,20]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([509,20]) [i] based on
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,18}, and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(291, 511, F2, 21) (dual of [511, 420, 22]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,20], and designed minimum distance d ≥ |I|+1 = 22 [i]
- linear OA(2100, 511, F2, 23) (dual of [511, 411, 24]-code), using the primitive BCH-code C(I) with length 511 = 29−1, defining interval I = {−2,−1,…,20}, and designed minimum distance d ≥ |I|+1 = 24 [i]
- linear OA(282, 511, F2, 19) (dual of [511, 429, 20]-code), using the primitive expurgated narrow-sense BCH-code C(I) with length 511 = 29−1, defining interval I = [0,18], and designed minimum distance d ≥ |I|+1 = 20 [i]
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code), using
- discarding factors / shortening the dual code based on linear OA(21, s, F2, 1) (dual of [s, s−1, 2]-code) for arbitrarily large s, using
- linear OA(21, 10, F2, 1) (dual of [10, 9, 2]-code) (see above)
- construction XX applied to C1 = C([509,18]), C2 = C([0,20]), C3 = C1 + C2 = C([0,18]), and C∩ = C1 ∩ C2 = C([509,20]) [i] based on
Mode: Constructive and linear.
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
None.