Information on Result #521606
There is no (61, 192, 197)-net in base 3, because extracting embedded orthogonal array would yield OA(3192, 197, S3, 131), but
- the (dual) Plotkin bound shows that M ≥ 1093 061682 616768 598101 980749 118434 678309 602685 816438 255039 403134 728775 682721 408160 470718 926107 / 22 > 3192 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (61, 193, 197)-net in base 3 | [i] | m-Reduction | |
2 | No (61, 194, 197)-net in base 3 | [i] | ||
3 | No (61, 195, 197)-net in base 3 | [i] | ||
4 | No (61, 196, 197)-net in base 3 | [i] | ||
5 | No (61, 197, 197)-net in base 3 | [i] | ||
6 | No (61, 198, 197)-net in base 3 | [i] | ||
7 | No (61, 199, 197)-net in base 3 | [i] | ||
8 | No (61, 200, 197)-net in base 3 | [i] | ||
9 | No (61, 201, 197)-net in base 3 | [i] | ||
10 | No (61, 202, 197)-net in base 3 | [i] | ||
11 | No (61, 203, 197)-net in base 3 | [i] | ||
12 | No (61, 204, 197)-net in base 3 | [i] | ||
13 | No (61, 205, 197)-net in base 3 | [i] | ||
14 | No (61, 206, 197)-net in base 3 | [i] | ||
15 | No (61, 207, 197)-net in base 3 | [i] | ||
16 | No (61, 208, 197)-net in base 3 | [i] | ||
17 | No (61, 209, 197)-net in base 3 | [i] | ||
18 | No (61, 210, 197)-net in base 3 | [i] | ||
19 | No (61, 211, 197)-net in base 3 | [i] | ||
20 | No (61, 212, 197)-net in base 3 | [i] | ||
21 | No (61, 213, 197)-net in base 3 | [i] | ||
22 | No (61, 214, 197)-net in base 3 | [i] | ||
23 | No (61, 215, 197)-net in base 3 | [i] | ||
24 | No (61, 216, 197)-net in base 3 | [i] | ||
25 | No (61, 217, 197)-net in base 3 | [i] | ||
26 | No (61, 218, 197)-net in base 3 | [i] | ||
27 | No (61, 219, 197)-net in base 3 | [i] | ||
28 | No (61, 220, 197)-net in base 3 | [i] | ||
29 | No (61, 221, 197)-net in base 3 | [i] | ||
30 | No (61, 222, 197)-net in base 3 | [i] | ||
31 | No (61, 223, 197)-net in base 3 | [i] | ||
32 | No (61, 224, 197)-net in base 3 | [i] | ||
33 | No (61, 225, 197)-net in base 3 | [i] | ||
34 | No (61, 226, 197)-net in base 3 | [i] | ||
35 | No (61, 227, 197)-net in base 3 | [i] | ||
36 | No (61, 228, 197)-net in base 3 | [i] | ||
37 | No (61, 229, 197)-net in base 3 | [i] | ||
38 | No (61, 230, 197)-net in base 3 | [i] | ||
39 | No (61, 231, 197)-net in base 3 | [i] | ||
40 | No (61, 232, 197)-net in base 3 | [i] | ||
41 | No (61, 233, 197)-net in base 3 | [i] | ||
42 | No (61, 234, 197)-net in base 3 | [i] | ||
43 | No (61, 235, 197)-net in base 3 | [i] | ||
44 | No (61, 236, 197)-net in base 3 | [i] | ||
45 | No (61, 237, 197)-net in base 3 | [i] | ||
46 | No (61, 238, 197)-net in base 3 | [i] | ||
47 | No (61, 239, 197)-net in base 3 | [i] | ||
48 | No (61, 240, 197)-net in base 3 | [i] | ||
49 | No (61, 241, 197)-net in base 3 | [i] | ||
50 | No (61, 242, 197)-net in base 3 | [i] | ||
51 | No (61, 243, 197)-net in base 3 | [i] | ||
52 | No (61, 244, 197)-net in base 3 | [i] | ||
53 | No (61, 245, 197)-net in base 3 | [i] | ||
54 | No (61, 246, 197)-net in base 3 | [i] | ||
55 | No (61, 247, 197)-net in base 3 | [i] | ||
56 | No (61, 248, 197)-net in base 3 | [i] | ||
57 | No (61, 249, 197)-net in base 3 | [i] | ||
58 | No (61, 250, 197)-net in base 3 | [i] |