Information on Result #521710

There is no (69, 178, 292)-net in base 3, because extracting embedded orthogonal array would yield OA(3178, 292, S3, 109), but

Mode: Bound.

Optimality

Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No (69, 179, 292)-net in base 3 [i]m-Reduction
2No (69, 180, 292)-net in base 3 [i]
3No (69, 181, 292)-net in base 3 [i]
4No (69, 182, 292)-net in base 3 [i]
5No (69, 183, 292)-net in base 3 [i]
6No (69, 184, 292)-net in base 3 [i]
7No (69, 185, 292)-net in base 3 [i]
8No (69, 186, 292)-net in base 3 [i]
9No (69, 187, 292)-net in base 3 [i]
10No (69, 188, 292)-net in base 3 [i]
11No (69, 189, 292)-net in base 3 [i]
12No (69, 190, 292)-net in base 3 [i]
13No (69, 191, 292)-net in base 3 [i]
14No (69, 192, 292)-net in base 3 [i]
15No (69, 193, 292)-net in base 3 [i]
16No (69, 194, 292)-net in base 3 [i]
17No (69, 195, 292)-net in base 3 [i]
18No (69, 196, 292)-net in base 3 [i]
19No (69, 197, 292)-net in base 3 [i]
20No (69, 198, 292)-net in base 3 [i]
21No (69, 199, 292)-net in base 3 [i]
22No (69, 200, 292)-net in base 3 [i]
23No (69, 201, 292)-net in base 3 [i]
24No (69, 202, 292)-net in base 3 [i]
25No (69, 203, 292)-net in base 3 [i]
26No (69, 204, 292)-net in base 3 [i]
27No (69, 205, 292)-net in base 3 [i]
28No (69, 206, 292)-net in base 3 [i]
29No (69, 207, 292)-net in base 3 [i]
30No (69, 208, 292)-net in base 3 [i]
31No (69, 209, 292)-net in base 3 [i]
32No (69, 210, 292)-net in base 3 [i]