Information on Result #524027
There is no (8, 118, 162)-net in base 16, because extracting embedded orthogonal array would yield OA(16118, 162, S16, 110), but
- the linear programming bound shows that M ≥ 67094 250143 496863 765945 730599 677506 281097 054797 487214 706877 103483 276101 353471 276226 918006 219975 937180 683388 806856 799132 700635 802263 722925 587419 834381 300386 510535 149825 818624 / 5 332004 745796 121301 490270 732015 > 16118 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (8, 119, 162)-net in base 16 | [i] | m-Reduction | |
2 | No (8, 120, 162)-net in base 16 | [i] | ||
3 | No (8, 121, 162)-net in base 16 | [i] | ||
4 | No (8, 122, 162)-net in base 16 | [i] | ||
5 | No (8, 123, 162)-net in base 16 | [i] | ||
6 | No (8, 124, 162)-net in base 16 | [i] | ||
7 | No (8, 125, 162)-net in base 16 | [i] | ||
8 | No (8, 126, 162)-net in base 16 | [i] | ||
9 | No (8, 127, 162)-net in base 16 | [i] | ||
10 | No (8, 128, 162)-net in base 16 | [i] | ||
11 | No (8, 129, 162)-net in base 16 | [i] | ||
12 | No (8, 130, 162)-net in base 16 | [i] |