Information on Result #524216
There is no (3, 97, 103)-net in base 27, because extracting embedded orthogonal array would yield OA(2797, 103, S27, 94), but
- the linear programming bound shows that M ≥ 128 911025 055144 003712 512083 846133 074073 104655 021247 977332 109220 807942 928575 240457 586722 133506 291651 511625 988777 715999 325631 713723 671307 153546 411869 / 17 583797 > 2797 [i]
Mode: Bound.
Optimality
Show details for fixed k and m, k and s, k and t, m and s, m and t, t and s.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No (3, 98, 103)-net in base 27 | [i] | m-Reduction | |
2 | No (3, 99, 103)-net in base 27 | [i] | ||
3 | No (3, 100, 103)-net in base 27 | [i] | ||
4 | No (3, 101, 103)-net in base 27 | [i] | ||
5 | No (3, 102, 103)-net in base 27 | [i] | ||
6 | No (3, 103, 103)-net in base 27 | [i] | ||
7 | No (3, 104, 103)-net in base 27 | [i] | ||
8 | No (3, 105, 103)-net in base 27 | [i] | ||
9 | No (3, 106, 103)-net in base 27 | [i] | ||
10 | No (3, 107, 103)-net in base 27 | [i] | ||
11 | No (3, 108, 103)-net in base 27 | [i] | ||
12 | No (3, 109, 103)-net in base 27 | [i] | ||
13 | No (3, 110, 103)-net in base 27 | [i] | ||
14 | No (3, m, 103)-net in base 27 for arbitrarily large m | [i] | m-Reduction from Arbitrarily Large Net |