Information on Result #546165

There is no linear OA(241, 48, F2, 22) (dual of [48, 7, 23]-code), because residual code would yield linear OA(219, 25, F2, 11) (dual of [25, 6, 12]-code), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(242, 49, F2, 23) (dual of [49, 7, 24]-code) [i]Truncation
2No linear OOA(241, 48, F2, 2, 22) (dual of [(48, 2), 55, 23]-NRT-code) [i]Depth Reduction
3No linear OOA(241, 48, F2, 3, 22) (dual of [(48, 3), 103, 23]-NRT-code) [i]
4No linear OOA(241, 48, F2, 4, 22) (dual of [(48, 4), 151, 23]-NRT-code) [i]
5No linear OOA(241, 48, F2, 5, 22) (dual of [(48, 5), 199, 23]-NRT-code) [i]
6No linear OOA(241, 48, F2, 6, 22) (dual of [(48, 6), 247, 23]-NRT-code) [i]
7No linear OOA(241, 48, F2, 7, 22) (dual of [(48, 7), 295, 23]-NRT-code) [i]
8No linear OOA(241, 48, F2, 8, 22) (dual of [(48, 8), 343, 23]-NRT-code) [i]
9No linear OA(285, 93, F2, 44) (dual of [93, 8, 45]-code) [i]Residual Code