Information on Result #546191
There is no linear OA(2129, 197, F2, 60) (dual of [197, 68, 61]-code), because residual code would yield OA(269, 136, S2, 30), but
- the linear programming bound shows that M ≥ 9953 606881 455955 393180 647209 954684 775902 917778 898747 969803 296803 127296 / 16 615467 389796 179841 085069 094075 585803 909505 010295 > 269 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2130, 198, F2, 61) (dual of [198, 68, 62]-code) | [i] | Truncation | |
2 | No linear OOA(2130, 197, F2, 2, 61) (dual of [(197, 2), 264, 62]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2129, 197, F2, 2, 60) (dual of [(197, 2), 265, 61]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2129, 197, F2, 3, 60) (dual of [(197, 3), 462, 61]-NRT-code) | [i] |