Information on Result #546200
There is no linear OA(2134, 173, F2, 64) (dual of [173, 39, 65]-code), because residual code would yield OA(270, 108, S2, 32), but
- the linear programming bound shows that M ≥ 4 297708 243581 570312 211812 843520 / 3462 071301 > 270 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2135, 174, F2, 65) (dual of [174, 39, 66]-code) | [i] | Truncation | |
2 | No linear OOA(2135, 173, F2, 2, 65) (dual of [(173, 2), 211, 66]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2134, 173, F2, 2, 64) (dual of [(173, 2), 212, 65]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2134, 173, F2, 3, 64) (dual of [(173, 3), 385, 65]-NRT-code) | [i] | ||
5 | No linear OOA(2134, 173, F2, 4, 64) (dual of [(173, 4), 558, 65]-NRT-code) | [i] | ||
6 | No linear OOA(2134, 173, F2, 5, 64) (dual of [(173, 5), 731, 65]-NRT-code) | [i] | ||
7 | No linear OOA(2134, 173, F2, 6, 64) (dual of [(173, 6), 904, 65]-NRT-code) | [i] | ||
8 | No linear OOA(2134, 173, F2, 7, 64) (dual of [(173, 7), 1077, 65]-NRT-code) | [i] | ||
9 | No linear OOA(2134, 173, F2, 8, 64) (dual of [(173, 8), 1250, 65]-NRT-code) | [i] | ||
10 | No digital (70, 134, 173)-net over F2 | [i] | Extracting Embedded Orthogonal Array |