Information on Result #546397
There is no linear OA(2186, 203, F2, 92) (dual of [203, 17, 93]-code), because residual code would yield OA(294, 110, S2, 46), but
- the linear programming bound shows that M ≥ 70 671520 962723 789133 441203 699712 / 3451 > 294 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2187, 204, F2, 93) (dual of [204, 17, 94]-code) | [i] | Truncation | |
2 | No linear OOA(2187, 203, F2, 2, 93) (dual of [(203, 2), 219, 94]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2189, 203, F2, 2, 95) (dual of [(203, 2), 217, 96]-NRT-code) | [i] | ||
4 | No linear OOA(2186, 203, F2, 2, 92) (dual of [(203, 2), 220, 93]-NRT-code) | [i] | Depth Reduction | |
5 | No linear OOA(2186, 203, F2, 3, 92) (dual of [(203, 3), 423, 93]-NRT-code) | [i] | ||
6 | No linear OOA(2186, 203, F2, 4, 92) (dual of [(203, 4), 626, 93]-NRT-code) | [i] | ||
7 | No linear OOA(2186, 203, F2, 5, 92) (dual of [(203, 5), 829, 93]-NRT-code) | [i] | ||
8 | No linear OOA(2186, 203, F2, 6, 92) (dual of [(203, 6), 1032, 93]-NRT-code) | [i] | ||
9 | No linear OOA(2186, 203, F2, 7, 92) (dual of [(203, 7), 1235, 93]-NRT-code) | [i] | ||
10 | No linear OOA(2186, 203, F2, 8, 92) (dual of [(203, 8), 1438, 93]-NRT-code) | [i] | ||
11 | No digital (94, 186, 203)-net over F2 | [i] | Extracting Embedded Orthogonal Array |