Information on Result #546430
There is no linear OA(2200, 237, F2, 96) (dual of [237, 37, 97]-code), because residual code would yield OA(2104, 140, S2, 48), but
- the linear programming bound shows that M ≥ 906615 640616 170781 657520 759485 197602 258944 / 38102 739675 > 2104 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2201, 238, F2, 97) (dual of [238, 37, 98]-code) | [i] | Truncation | |
2 | No linear OOA(2201, 237, F2, 2, 97) (dual of [(237, 2), 273, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2200, 237, F2, 2, 96) (dual of [(237, 2), 274, 97]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2200, 237, F2, 3, 96) (dual of [(237, 3), 511, 97]-NRT-code) | [i] | ||
5 | No linear OOA(2200, 237, F2, 4, 96) (dual of [(237, 4), 748, 97]-NRT-code) | [i] | ||
6 | No linear OOA(2200, 237, F2, 5, 96) (dual of [(237, 5), 985, 97]-NRT-code) | [i] | ||
7 | No linear OOA(2200, 237, F2, 6, 96) (dual of [(237, 6), 1222, 97]-NRT-code) | [i] | ||
8 | No linear OOA(2200, 237, F2, 7, 96) (dual of [(237, 7), 1459, 97]-NRT-code) | [i] | ||
9 | No linear OOA(2200, 237, F2, 8, 96) (dual of [(237, 8), 1696, 97]-NRT-code) | [i] | ||
10 | No digital (104, 200, 237)-net over F2 | [i] | Extracting Embedded Orthogonal Array |