Information on Result #546439
There is no linear OA(2201, 229, F2, 98) (dual of [229, 28, 99]-code), because residual code would yield OA(2103, 130, S2, 49), but
- 1 times truncation [i] would yield OA(2102, 129, S2, 48), but
- the linear programming bound shows that M ≥ 4505 293676 588367 515344 369298 908326 658048 / 781 535645 > 2102 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2202, 230, F2, 99) (dual of [230, 28, 100]-code) | [i] | Truncation | |
2 | No linear OOA(2202, 229, F2, 2, 99) (dual of [(229, 2), 256, 100]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2201, 229, F2, 2, 98) (dual of [(229, 2), 257, 99]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2201, 229, F2, 3, 98) (dual of [(229, 3), 486, 99]-NRT-code) | [i] | ||
5 | No linear OOA(2201, 229, F2, 4, 98) (dual of [(229, 4), 715, 99]-NRT-code) | [i] | ||
6 | No linear OOA(2201, 229, F2, 5, 98) (dual of [(229, 5), 944, 99]-NRT-code) | [i] | ||
7 | No linear OOA(2201, 229, F2, 6, 98) (dual of [(229, 6), 1173, 99]-NRT-code) | [i] | ||
8 | No linear OOA(2201, 229, F2, 7, 98) (dual of [(229, 7), 1402, 99]-NRT-code) | [i] | ||
9 | No linear OOA(2201, 229, F2, 8, 98) (dual of [(229, 8), 1631, 99]-NRT-code) | [i] | ||
10 | No digital (103, 201, 229)-net over F2 | [i] | Extracting Embedded Orthogonal Array |