Information on Result #546523
There is no linear OA(2246, 264, F2, 122) (dual of [264, 18, 123]-code), because residual code would yield OA(2124, 141, S2, 61), but
- 1 times truncation [i] would yield OA(2123, 140, S2, 60), but
- the linear programming bound shows that M ≥ 3 888746 889172 484760 459445 013730 247120 519168 / 329189 > 2123 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(2247, 265, F2, 123) (dual of [265, 18, 124]-code) | [i] | Truncation | |
2 | No linear OOA(2247, 264, F2, 2, 123) (dual of [(264, 2), 281, 124]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(2246, 264, F2, 2, 122) (dual of [(264, 2), 282, 123]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(2246, 264, F2, 3, 122) (dual of [(264, 3), 546, 123]-NRT-code) | [i] | ||
5 | No linear OOA(2246, 264, F2, 4, 122) (dual of [(264, 4), 810, 123]-NRT-code) | [i] | ||
6 | No linear OOA(2246, 264, F2, 5, 122) (dual of [(264, 5), 1074, 123]-NRT-code) | [i] | ||
7 | No linear OOA(2246, 264, F2, 6, 122) (dual of [(264, 6), 1338, 123]-NRT-code) | [i] | ||
8 | No linear OOA(2246, 264, F2, 7, 122) (dual of [(264, 7), 1602, 123]-NRT-code) | [i] | ||
9 | No linear OOA(2246, 264, F2, 8, 122) (dual of [(264, 8), 1866, 123]-NRT-code) | [i] | ||
10 | No digital (124, 246, 264)-net over F2 | [i] | Extracting Embedded Orthogonal Array |