Information on Result #546608
There is no linear OA(3125, 224, F3, 78) (dual of [224, 99, 79]-code), because residual code would yield OA(347, 145, S3, 26), but
- the linear programming bound shows that M ≥ 831 528639 252434 333719 554172 193113 411271 544000 / 29642 853144 349355 775349 > 347 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3126, 225, F3, 79) (dual of [225, 99, 80]-code) | [i] | Truncation | |
2 | No linear OOA(3126, 224, F3, 2, 79) (dual of [(224, 2), 322, 80]-NRT-code) | [i] | m-Reduction for OOAs | |
3 | No linear OOA(3125, 224, F3, 2, 78) (dual of [(224, 2), 323, 79]-NRT-code) | [i] | Depth Reduction | |
4 | No linear OOA(3125, 224, F3, 3, 78) (dual of [(224, 3), 547, 79]-NRT-code) | [i] | ||
5 | No linear OOA(3125, 224, F3, 4, 78) (dual of [(224, 4), 771, 79]-NRT-code) | [i] | ||
6 | No linear OOA(3125, 224, F3, 5, 78) (dual of [(224, 5), 995, 79]-NRT-code) | [i] | ||
7 | No digital (47, 125, 224)-net over F3 | [i] | Extracting Embedded Orthogonal Array | |
8 | No linear OA(3102, 227, F3, 62) (dual of [227, 125, 63]-code) | [i] | Construction Y1 (Bound) |