Information on Result #546642
There is no linear OA(3143, 192, F3, 93) (dual of [192, 49, 94]-code), because residual code would yield OA(350, 98, S3, 31), but
- the linear programming bound shows that M ≥ 10987 648641 013342 145743 173235 372682 266899 084370 827701 912518 996312 526775 125687 859494 241272 685867 404994 948584 725486 672070 814119 485618 889026 285759 139347 500994 272409 764144 107327 485143 / 14936 850860 728382 359380 496865 658716 917486 950067 604982 230925 851448 010473 789047 996877 004044 146341 975545 413487 942444 435229 603540 358524 720271 605160 064554 378035 > 350 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3144, 193, F3, 94) (dual of [193, 49, 95]-code) | [i] | Truncation | |
2 | No linear OA(3145, 194, F3, 95) (dual of [194, 49, 96]-code) | [i] | ||
3 | No linear OOA(3144, 192, F3, 2, 94) (dual of [(192, 2), 240, 95]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3145, 192, F3, 2, 95) (dual of [(192, 2), 239, 96]-NRT-code) | [i] | ||
5 | No linear OOA(3143, 192, F3, 2, 93) (dual of [(192, 2), 241, 94]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3143, 192, F3, 3, 93) (dual of [(192, 3), 433, 94]-NRT-code) | [i] | ||
7 | No linear OOA(3143, 192, F3, 4, 93) (dual of [(192, 4), 625, 94]-NRT-code) | [i] | ||
8 | No linear OOA(3143, 192, F3, 5, 93) (dual of [(192, 5), 817, 94]-NRT-code) | [i] | ||
9 | No digital (50, 143, 192)-net over F3 | [i] | Extracting Embedded Orthogonal Array |