Information on Result #546656
There is no linear OA(3150, 223, F3, 96) (dual of [223, 73, 97]-code), because residual code would yield OA(354, 126, S3, 32), but
- the linear programming bound shows that M ≥ 15 551175 343489 816312 839781 958526 754046 650025 716899 066271 597025 177434 186311 225436 494080 388171 855211 042571 528095 306878 344834 964322 752687 664073 776320 / 247669 228492 701837 800287 038860 817164 439353 182480 938178 042680 577677 782903 404567 720365 536303 663330 806259 025721 550363 325847 > 354 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3151, 224, F3, 97) (dual of [224, 73, 98]-code) | [i] | Truncation | |
2 | No linear OA(3152, 225, F3, 98) (dual of [225, 73, 99]-code) | [i] | ||
3 | No linear OOA(3151, 223, F3, 2, 97) (dual of [(223, 2), 295, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3152, 223, F3, 2, 98) (dual of [(223, 2), 294, 99]-NRT-code) | [i] | ||
5 | No linear OOA(3150, 223, F3, 2, 96) (dual of [(223, 2), 296, 97]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3150, 223, F3, 3, 96) (dual of [(223, 3), 519, 97]-NRT-code) | [i] | ||
7 | No linear OOA(3150, 223, F3, 4, 96) (dual of [(223, 4), 742, 97]-NRT-code) | [i] | ||
8 | No linear OOA(3150, 223, F3, 5, 96) (dual of [(223, 5), 965, 97]-NRT-code) | [i] | ||
9 | No digital (54, 150, 223)-net over F3 | [i] | Extracting Embedded Orthogonal Array |