Information on Result #546657

There is no linear OA(3151, 233, F3, 96) (dual of [233, 82, 97]-code), because residual code would yield OA(355, 136, S3, 32), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3152, 234, F3, 97) (dual of [234, 82, 98]-code) [i]Truncation
2No linear OA(3153, 235, F3, 98) (dual of [235, 82, 99]-code) [i]
3No linear OOA(3152, 233, F3, 2, 97) (dual of [(233, 2), 314, 98]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3153, 233, F3, 2, 98) (dual of [(233, 2), 313, 99]-NRT-code) [i]
5No linear OOA(3151, 233, F3, 2, 96) (dual of [(233, 2), 315, 97]-NRT-code) [i]Depth Reduction
6No linear OOA(3151, 233, F3, 3, 96) (dual of [(233, 3), 548, 97]-NRT-code) [i]
7No linear OOA(3151, 233, F3, 4, 96) (dual of [(233, 4), 781, 97]-NRT-code) [i]
8No linear OOA(3151, 233, F3, 5, 96) (dual of [(233, 5), 1014, 97]-NRT-code) [i]
9No digital (55, 151, 233)-net over F3 [i]Extracting Embedded Orthogonal Array