Information on Result #546658
There is no linear OA(3152, 247, F3, 96) (dual of [247, 95, 97]-code), because residual code would yield OA(356, 150, S3, 32), but
- the linear programming bound shows that M ≥ 1 042121 495058 696990 589459 594226 638528 877701 897049 834059 577395 312500 / 1911 837015 144775 294785 556339 011193 770361 > 356 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3153, 248, F3, 97) (dual of [248, 95, 98]-code) | [i] | Truncation | |
2 | No linear OA(3154, 249, F3, 98) (dual of [249, 95, 99]-code) | [i] | ||
3 | No linear OOA(3153, 247, F3, 2, 97) (dual of [(247, 2), 341, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3154, 247, F3, 2, 98) (dual of [(247, 2), 340, 99]-NRT-code) | [i] | ||
5 | No linear OOA(3152, 247, F3, 2, 96) (dual of [(247, 2), 342, 97]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3152, 247, F3, 3, 96) (dual of [(247, 3), 589, 97]-NRT-code) | [i] | ||
7 | No linear OOA(3152, 247, F3, 4, 96) (dual of [(247, 4), 836, 97]-NRT-code) | [i] | ||
8 | No linear OOA(3152, 247, F3, 5, 96) (dual of [(247, 5), 1083, 97]-NRT-code) | [i] | ||
9 | No digital (56, 152, 247)-net over F3 | [i] | Extracting Embedded Orthogonal Array |