Information on Result #546660
There is no linear OA(3154, 270, F3, 96) (dual of [270, 116, 97]-code), because residual code would yield OA(358, 173, S3, 32), but
- the linear programming bound shows that M ≥ 47 314229 835710 776345 670615 418214 790563 428291 670976 086718 521800 / 9965 095822 320687 546955 148607 190123 > 358 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3155, 271, F3, 97) (dual of [271, 116, 98]-code) | [i] | Truncation | |
2 | No linear OA(3156, 272, F3, 98) (dual of [272, 116, 99]-code) | [i] | ||
3 | No linear OOA(3155, 270, F3, 2, 97) (dual of [(270, 2), 385, 98]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3156, 270, F3, 2, 98) (dual of [(270, 2), 384, 99]-NRT-code) | [i] | ||
5 | No linear OOA(3154, 270, F3, 2, 96) (dual of [(270, 2), 386, 97]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3154, 270, F3, 3, 96) (dual of [(270, 3), 656, 97]-NRT-code) | [i] | ||
7 | No linear OOA(3154, 270, F3, 4, 96) (dual of [(270, 4), 926, 97]-NRT-code) | [i] | ||
8 | No linear OOA(3154, 270, F3, 5, 96) (dual of [(270, 5), 1196, 97]-NRT-code) | [i] | ||
9 | No digital (58, 154, 270)-net over F3 | [i] | Extracting Embedded Orthogonal Array |