Information on Result #546665
There is no linear OA(3150, 174, F3, 99) (dual of [174, 24, 100]-code), because residual code would yield OA(351, 74, S3, 33), but
- the linear programming bound shows that M ≥ 123 263670 768810 287673 347725 757839 680807 / 56 048467 475000 > 351 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3151, 175, F3, 100) (dual of [175, 24, 101]-code) | [i] | Truncation | |
2 | No linear OA(3152, 176, F3, 101) (dual of [176, 24, 102]-code) | [i] | ||
3 | No linear OOA(3151, 174, F3, 2, 100) (dual of [(174, 2), 197, 101]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3152, 174, F3, 2, 101) (dual of [(174, 2), 196, 102]-NRT-code) | [i] | ||
5 | No linear OOA(3150, 174, F3, 2, 99) (dual of [(174, 2), 198, 100]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3150, 174, F3, 3, 99) (dual of [(174, 3), 372, 100]-NRT-code) | [i] | ||
7 | No linear OOA(3150, 174, F3, 4, 99) (dual of [(174, 4), 546, 100]-NRT-code) | [i] | ||
8 | No linear OOA(3150, 174, F3, 5, 99) (dual of [(174, 5), 720, 100]-NRT-code) | [i] | ||
9 | No digital (51, 150, 174)-net over F3 | [i] | Extracting Embedded Orthogonal Array |