Information on Result #546673
There is no linear OA(3158, 274, F3, 99) (dual of [274, 116, 100]-code), because residual code would yield OA(359, 174, S3, 33), but
- 1 times truncation [i] would yield OA(358, 173, S3, 32), but
- the linear programming bound shows that M ≥ 47 314229 835710 776345 670615 418214 790563 428291 670976 086718 521800 / 9965 095822 320687 546955 148607 190123 > 358 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3159, 275, F3, 100) (dual of [275, 116, 101]-code) | [i] | Truncation | |
2 | No linear OA(3160, 276, F3, 101) (dual of [276, 116, 102]-code) | [i] | ||
3 | No linear OOA(3159, 274, F3, 2, 100) (dual of [(274, 2), 389, 101]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3160, 274, F3, 2, 101) (dual of [(274, 2), 388, 102]-NRT-code) | [i] | ||
5 | No linear OOA(3158, 274, F3, 2, 99) (dual of [(274, 2), 390, 100]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3158, 274, F3, 3, 99) (dual of [(274, 3), 664, 100]-NRT-code) | [i] | ||
7 | No linear OOA(3158, 274, F3, 4, 99) (dual of [(274, 4), 938, 100]-NRT-code) | [i] | ||
8 | No linear OOA(3158, 274, F3, 5, 99) (dual of [(274, 5), 1212, 100]-NRT-code) | [i] | ||
9 | No digital (59, 158, 274)-net over F3 | [i] | Extracting Embedded Orthogonal Array |