Information on Result #546677

There is no linear OA(3153, 168, F3, 102) (dual of [168, 15, 103]-code), because residual code would yield OA(351, 65, S3, 34), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Compare with Markus Grassl’s online database of code parameters.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3154, 169, F3, 103) (dual of [169, 15, 104]-code) [i]Truncation
2No linear OA(3155, 170, F3, 104) (dual of [170, 15, 105]-code) [i]
3No linear OOA(3154, 168, F3, 2, 103) (dual of [(168, 2), 182, 104]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3155, 168, F3, 2, 104) (dual of [(168, 2), 181, 105]-NRT-code) [i]
5No linear OOA(3153, 168, F3, 2, 102) (dual of [(168, 2), 183, 103]-NRT-code) [i]Depth Reduction
6No linear OOA(3153, 168, F3, 3, 102) (dual of [(168, 3), 351, 103]-NRT-code) [i]
7No linear OOA(3153, 168, F3, 4, 102) (dual of [(168, 4), 519, 103]-NRT-code) [i]
8No linear OOA(3153, 168, F3, 5, 102) (dual of [(168, 5), 687, 103]-NRT-code) [i]
9No digital (51, 153, 168)-net over F3 [i]Extracting Embedded Orthogonal Array