Information on Result #546685
There is no linear OA(3161, 252, F3, 102) (dual of [252, 91, 103]-code), because residual code would yield OA(359, 149, S3, 34), but
- the linear programming bound shows that M ≥ 161072 631961 680185 280440 930117 244701 258542 024979 482340 755321 093357 664942 075114 897456 280621 705350 294957 376375 / 10 335291 754987 667559 057108 370888 319896 679664 836625 228437 457068 286900 284102 491501 > 359 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3162, 253, F3, 103) (dual of [253, 91, 104]-code) | [i] | Truncation | |
2 | No linear OA(3163, 254, F3, 104) (dual of [254, 91, 105]-code) | [i] | ||
3 | No linear OOA(3162, 252, F3, 2, 103) (dual of [(252, 2), 342, 104]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3163, 252, F3, 2, 104) (dual of [(252, 2), 341, 105]-NRT-code) | [i] | ||
5 | No linear OOA(3161, 252, F3, 2, 102) (dual of [(252, 2), 343, 103]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3161, 252, F3, 3, 102) (dual of [(252, 3), 595, 103]-NRT-code) | [i] | ||
7 | No linear OOA(3161, 252, F3, 4, 102) (dual of [(252, 4), 847, 103]-NRT-code) | [i] | ||
8 | No linear OOA(3161, 252, F3, 5, 102) (dual of [(252, 5), 1099, 103]-NRT-code) | [i] | ||
9 | No digital (59, 161, 252)-net over F3 | [i] | Extracting Embedded Orthogonal Array |