Information on Result #546686
There is no linear OA(3162, 265, F3, 102) (dual of [265, 103, 103]-code), because residual code would yield OA(360, 162, S3, 34), but
- the linear programming bound shows that M ≥ 68980 367968 436452 870293 317186 511729 045056 682286 749727 903703 040000 000000 / 1 592376 446885 204670 935611 188490 612206 288097 > 360 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3163, 266, F3, 103) (dual of [266, 103, 104]-code) | [i] | Truncation | |
2 | No linear OA(3164, 267, F3, 104) (dual of [267, 103, 105]-code) | [i] | ||
3 | No linear OOA(3163, 265, F3, 2, 103) (dual of [(265, 2), 367, 104]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3164, 265, F3, 2, 104) (dual of [(265, 2), 366, 105]-NRT-code) | [i] | ||
5 | No linear OOA(3162, 265, F3, 2, 102) (dual of [(265, 2), 368, 103]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3162, 265, F3, 3, 102) (dual of [(265, 3), 633, 103]-NRT-code) | [i] | ||
7 | No linear OOA(3162, 265, F3, 4, 102) (dual of [(265, 4), 898, 103]-NRT-code) | [i] | ||
8 | No linear OOA(3162, 265, F3, 5, 102) (dual of [(265, 5), 1163, 103]-NRT-code) | [i] | ||
9 | No digital (60, 162, 265)-net over F3 | [i] | Extracting Embedded Orthogonal Array |