Information on Result #546694
There is no linear OA(3161, 204, F3, 105) (dual of [204, 43, 106]-code), because residual code would yield OA(356, 98, S3, 35), but
- the linear programming bound shows that M ≥ 17594 267310 234640 548980 678885 211362 293573 050792 059460 366181 760458 388479 597863 317354 958813 552441 815811 709869 / 31 435807 153094 400646 640285 665269 261214 518362 272160 890223 276799 339913 769425 758125 > 356 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3162, 205, F3, 106) (dual of [205, 43, 107]-code) | [i] | Truncation | |
2 | No linear OA(3163, 206, F3, 107) (dual of [206, 43, 108]-code) | [i] | ||
3 | No linear OOA(3162, 204, F3, 2, 106) (dual of [(204, 2), 246, 107]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3163, 204, F3, 2, 107) (dual of [(204, 2), 245, 108]-NRT-code) | [i] | ||
5 | No linear OOA(3161, 204, F3, 2, 105) (dual of [(204, 2), 247, 106]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3161, 204, F3, 3, 105) (dual of [(204, 3), 451, 106]-NRT-code) | [i] | ||
7 | No linear OOA(3161, 204, F3, 4, 105) (dual of [(204, 4), 655, 106]-NRT-code) | [i] | ||
8 | No linear OOA(3161, 204, F3, 5, 105) (dual of [(204, 5), 859, 106]-NRT-code) | [i] | ||
9 | No digital (56, 161, 204)-net over F3 | [i] | Extracting Embedded Orthogonal Array |