Information on Result #546697
There is no linear OA(3164, 242, F3, 105) (dual of [242, 78, 106]-code), because residual code would yield OA(359, 136, S3, 35), but
- the linear programming bound shows that M ≥ 22 726839 204691 891253 644696 898369 207187 081234 181735 714843 341275 897616 762362 710018 187521 018627 172327 868695 031408 531569 772970 640083 192156 200366 308595 435159 925930 757650 433436 609239 366400 / 1549 254697 196676 010642 793897 637084 831954 187799 248006 962271 072379 219020 389873 109263 689496 974500 056880 902187 125508 048087 135151 525741 030050 717474 931926 817179 > 359 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3165, 243, F3, 106) (dual of [243, 78, 107]-code) | [i] | Truncation | |
2 | No linear OA(3166, 244, F3, 107) (dual of [244, 78, 108]-code) | [i] | ||
3 | No linear OOA(3165, 242, F3, 2, 106) (dual of [(242, 2), 319, 107]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3166, 242, F3, 2, 107) (dual of [(242, 2), 318, 108]-NRT-code) | [i] | ||
5 | No linear OOA(3164, 242, F3, 2, 105) (dual of [(242, 2), 320, 106]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3164, 242, F3, 3, 105) (dual of [(242, 3), 562, 106]-NRT-code) | [i] | ||
7 | No linear OOA(3164, 242, F3, 4, 105) (dual of [(242, 4), 804, 106]-NRT-code) | [i] | ||
8 | No linear OOA(3164, 242, F3, 5, 105) (dual of [(242, 5), 1046, 106]-NRT-code) | [i] | ||
9 | No digital (59, 164, 242)-net over F3 | [i] | Extracting Embedded Orthogonal Array |