Information on Result #546700
There is no linear OA(3167, 282, F3, 105) (dual of [282, 115, 106]-code), because residual code would yield OA(362, 176, S3, 35), but
- the linear programming bound shows that M ≥ 8 776263 770751 612540 193525 834020 135240 880280 270100 948539 296875 / 21 936508 659210 038625 164225 310787 > 362 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3168, 283, F3, 106) (dual of [283, 115, 107]-code) | [i] | Truncation | |
2 | No linear OA(3169, 284, F3, 107) (dual of [284, 115, 108]-code) | [i] | ||
3 | No linear OOA(3168, 282, F3, 2, 106) (dual of [(282, 2), 396, 107]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3169, 282, F3, 2, 107) (dual of [(282, 2), 395, 108]-NRT-code) | [i] | ||
5 | No linear OOA(3167, 282, F3, 2, 105) (dual of [(282, 2), 397, 106]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3167, 282, F3, 3, 105) (dual of [(282, 3), 679, 106]-NRT-code) | [i] | ||
7 | No linear OOA(3167, 282, F3, 4, 105) (dual of [(282, 4), 961, 106]-NRT-code) | [i] | ||
8 | No linear OOA(3167, 282, F3, 5, 105) (dual of [(282, 5), 1243, 106]-NRT-code) | [i] | ||
9 | No digital (62, 167, 282)-net over F3 | [i] | Extracting Embedded Orthogonal Array |