Information on Result #546742
There is no linear OA(3178, 206, F3, 117) (dual of [206, 28, 118]-code), because residual code would yield OA(361, 88, S3, 39), but
- the linear programming bound shows that M ≥ 27794 948374 262252 134892 330586 188426 701201 134663 / 193694 611824 634375 > 361 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3179, 207, F3, 118) (dual of [207, 28, 119]-code) | [i] | Truncation | |
2 | No linear OA(3180, 208, F3, 119) (dual of [208, 28, 120]-code) | [i] | ||
3 | No linear OOA(3179, 206, F3, 2, 118) (dual of [(206, 2), 233, 119]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3180, 206, F3, 2, 119) (dual of [(206, 2), 232, 120]-NRT-code) | [i] | ||
5 | No linear OOA(3178, 206, F3, 2, 117) (dual of [(206, 2), 234, 118]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3178, 206, F3, 3, 117) (dual of [(206, 3), 440, 118]-NRT-code) | [i] | ||
7 | No linear OOA(3178, 206, F3, 4, 117) (dual of [(206, 4), 646, 118]-NRT-code) | [i] | ||
8 | No linear OOA(3178, 206, F3, 5, 117) (dual of [(206, 5), 852, 118]-NRT-code) | [i] | ||
9 | No digital (61, 178, 206)-net over F3 | [i] | Extracting Embedded Orthogonal Array |