Information on Result #546744
There is no linear OA(3180, 228, F3, 117) (dual of [228, 48, 118]-code), because residual code would yield OA(363, 110, S3, 39), but
- the linear programming bound shows that M ≥ 401 475818 140604 282392 040969 710232 145438 658389 807791 365215 582135 475407 151345 717325 294327 153062 902549 711657 673773 152251 547301 / 325 455230 806957 608121 722211 436046 187202 554897 940196 290012 728886 526860 582095 622224 001861 980520 > 363 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3181, 229, F3, 118) (dual of [229, 48, 119]-code) | [i] | Truncation | |
2 | No linear OA(3182, 230, F3, 119) (dual of [230, 48, 120]-code) | [i] | ||
3 | No linear OOA(3181, 228, F3, 2, 118) (dual of [(228, 2), 275, 119]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3182, 228, F3, 2, 119) (dual of [(228, 2), 274, 120]-NRT-code) | [i] | ||
5 | No linear OOA(3180, 228, F3, 2, 117) (dual of [(228, 2), 276, 118]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3180, 228, F3, 3, 117) (dual of [(228, 3), 504, 118]-NRT-code) | [i] | ||
7 | No linear OOA(3180, 228, F3, 4, 117) (dual of [(228, 4), 732, 118]-NRT-code) | [i] | ||
8 | No linear OOA(3180, 228, F3, 5, 117) (dual of [(228, 5), 960, 118]-NRT-code) | [i] | ||
9 | No digital (63, 180, 228)-net over F3 | [i] | Extracting Embedded Orthogonal Array |