Information on Result #546753
There is no linear OA(3181, 199, F3, 120) (dual of [199, 18, 121]-code), because residual code would yield OA(361, 78, S3, 40), but
- the linear programming bound shows that M ≥ 3904 915634 579720 805714 510866 149518 645975 / 27453 221324 > 361 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3182, 200, F3, 121) (dual of [200, 18, 122]-code) | [i] | Truncation | |
2 | No linear OA(3183, 201, F3, 122) (dual of [201, 18, 123]-code) | [i] | ||
3 | No linear OOA(3182, 199, F3, 2, 121) (dual of [(199, 2), 216, 122]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3183, 199, F3, 2, 122) (dual of [(199, 2), 215, 123]-NRT-code) | [i] | ||
5 | No linear OOA(3181, 199, F3, 2, 120) (dual of [(199, 2), 217, 121]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3181, 199, F3, 3, 120) (dual of [(199, 3), 416, 121]-NRT-code) | [i] | ||
7 | No linear OOA(3181, 199, F3, 4, 120) (dual of [(199, 4), 615, 121]-NRT-code) | [i] | ||
8 | No linear OOA(3181, 199, F3, 5, 120) (dual of [(199, 5), 814, 121]-NRT-code) | [i] | ||
9 | No digital (61, 181, 199)-net over F3 | [i] | Extracting Embedded Orthogonal Array |