Information on Result #546756
There is no linear OA(3184, 225, F3, 120) (dual of [225, 41, 121]-code), because residual code would yield OA(364, 104, S3, 40), but
- the linear programming bound shows that M ≥ 2 962004 263094 532507 337869 081743 858222 059094 257308 728871 435455 157099 / 842061 707484 948215 471641 634707 432925 > 364 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3185, 226, F3, 121) (dual of [226, 41, 122]-code) | [i] | Truncation | |
2 | No linear OA(3186, 227, F3, 122) (dual of [227, 41, 123]-code) | [i] | ||
3 | No linear OOA(3185, 225, F3, 2, 121) (dual of [(225, 2), 265, 122]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3186, 225, F3, 2, 122) (dual of [(225, 2), 264, 123]-NRT-code) | [i] | ||
5 | No linear OOA(3184, 225, F3, 2, 120) (dual of [(225, 2), 266, 121]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3184, 225, F3, 3, 120) (dual of [(225, 3), 491, 121]-NRT-code) | [i] | ||
7 | No linear OOA(3184, 225, F3, 4, 120) (dual of [(225, 4), 716, 121]-NRT-code) | [i] | ||
8 | No linear OOA(3184, 225, F3, 5, 120) (dual of [(225, 5), 941, 121]-NRT-code) | [i] | ||
9 | No digital (64, 184, 225)-net over F3 | [i] | Extracting Embedded Orthogonal Array |