Information on Result #546789
There is no linear OA(3192, 221, F3, 126) (dual of [221, 29, 127]-code), because residual code would yield OA(366, 94, S3, 42), but
- the linear programming bound shows that M ≥ 1 747070 674352 666159 830908 506217 598892 875513 970337 / 51301 241878 906250 > 366 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3193, 222, F3, 127) (dual of [222, 29, 128]-code) | [i] | Truncation | |
2 | No linear OA(3194, 223, F3, 128) (dual of [223, 29, 129]-code) | [i] | ||
3 | No linear OOA(3193, 221, F3, 2, 127) (dual of [(221, 2), 249, 128]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3194, 221, F3, 2, 128) (dual of [(221, 2), 248, 129]-NRT-code) | [i] | ||
5 | No linear OOA(3192, 221, F3, 2, 126) (dual of [(221, 2), 250, 127]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3192, 221, F3, 3, 126) (dual of [(221, 3), 471, 127]-NRT-code) | [i] | ||
7 | No linear OOA(3192, 221, F3, 4, 126) (dual of [(221, 4), 692, 127]-NRT-code) | [i] | ||
8 | No linear OOA(3192, 221, F3, 5, 126) (dual of [(221, 5), 913, 127]-NRT-code) | [i] | ||
9 | No digital (66, 192, 221)-net over F3 | [i] | Extracting Embedded Orthogonal Array |