Information on Result #546809
There is no linear OA(3196, 221, F3, 129) (dual of [221, 25, 130]-code), because residual code would yield OA(367, 91, S3, 43), but
- the linear programming bound shows that M ≥ 14877 993637 977476 431918 834321 910343 999390 452202 / 142 782236 368585 > 367 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3197, 222, F3, 130) (dual of [222, 25, 131]-code) | [i] | Truncation | |
2 | No linear OA(3198, 223, F3, 131) (dual of [223, 25, 132]-code) | [i] | ||
3 | No linear OOA(3197, 221, F3, 2, 130) (dual of [(221, 2), 245, 131]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3198, 221, F3, 2, 131) (dual of [(221, 2), 244, 132]-NRT-code) | [i] | ||
5 | No linear OOA(3196, 221, F3, 2, 129) (dual of [(221, 2), 246, 130]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3196, 221, F3, 3, 129) (dual of [(221, 3), 467, 130]-NRT-code) | [i] | ||
7 | No linear OOA(3196, 221, F3, 4, 129) (dual of [(221, 4), 688, 130]-NRT-code) | [i] | ||
8 | No linear OOA(3196, 221, F3, 5, 129) (dual of [(221, 5), 909, 130]-NRT-code) | [i] | ||
9 | No digital (67, 196, 221)-net over F3 | [i] | Extracting Embedded Orthogonal Array |