Information on Result #546814

There is no linear OA(3201, 278, F3, 129) (dual of [278, 77, 130]-code), because residual code would yield OA(372, 148, S3, 43), but

Mode: Bound (linear).

Optimality

Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.

Other Results with Identical Parameters

None.

Depending Results

The following results depend on this result:

ResultThis
result
only
Method
1No linear OA(3202, 279, F3, 130) (dual of [279, 77, 131]-code) [i]Truncation
2No linear OA(3203, 280, F3, 131) (dual of [280, 77, 132]-code) [i]
3No linear OOA(3202, 278, F3, 2, 130) (dual of [(278, 2), 354, 131]-NRT-code) [i]m-Reduction for OOAs
4No linear OOA(3203, 278, F3, 2, 131) (dual of [(278, 2), 353, 132]-NRT-code) [i]
5No linear OOA(3201, 278, F3, 2, 129) (dual of [(278, 2), 355, 130]-NRT-code) [i]Depth Reduction
6No linear OOA(3201, 278, F3, 3, 129) (dual of [(278, 3), 633, 130]-NRT-code) [i]
7No linear OOA(3201, 278, F3, 4, 129) (dual of [(278, 4), 911, 130]-NRT-code) [i]
8No linear OOA(3201, 278, F3, 5, 129) (dual of [(278, 5), 1189, 130]-NRT-code) [i]
9No digital (72, 201, 278)-net over F3 [i]Extracting Embedded Orthogonal Array