Information on Result #546829
There is no linear OA(3198, 210, F3, 132) (dual of [210, 12, 133]-code), because residual code would yield OA(366, 77, S3, 44), but
- the linear programming bound shows that M ≥ 34 245670 463812 538347 598340 341640 500169 / 1 016275 > 366 [i]
Mode: Bound (linear).
Optimality
Show details for fixed k and m, n and k, k and s, k and t, n and m, m and s, m and t, n and s, n and t.
Compare with Markus Grassl’s online database of code parameters.
Other Results with Identical Parameters
None.
Depending Results
The following results depend on this result:
Result | This result only | Method | ||
---|---|---|---|---|
1 | No linear OA(3199, 211, F3, 133) (dual of [211, 12, 134]-code) | [i] | Truncation | |
2 | No linear OA(3200, 212, F3, 134) (dual of [212, 12, 135]-code) | [i] | ||
3 | No linear OOA(3199, 210, F3, 2, 133) (dual of [(210, 2), 221, 134]-NRT-code) | [i] | m-Reduction for OOAs | |
4 | No linear OOA(3200, 210, F3, 2, 134) (dual of [(210, 2), 220, 135]-NRT-code) | [i] | ||
5 | No linear OOA(3198, 210, F3, 2, 132) (dual of [(210, 2), 222, 133]-NRT-code) | [i] | Depth Reduction | |
6 | No linear OOA(3198, 210, F3, 3, 132) (dual of [(210, 3), 432, 133]-NRT-code) | [i] | ||
7 | No linear OOA(3198, 210, F3, 4, 132) (dual of [(210, 4), 642, 133]-NRT-code) | [i] | ||
8 | No linear OOA(3198, 210, F3, 5, 132) (dual of [(210, 5), 852, 133]-NRT-code) | [i] | ||
9 | No digital (66, 198, 210)-net over F3 | [i] | Extracting Embedded Orthogonal Array |